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SUMMARY 
The proficiency of available mixed methods for solving the flow of a Maxwell fluid is evaluated through their 
application to the same problem. The reasons for the usual degeneracy of the numerical results beyond some 
level of elasticity are investigated. The best-performing technique is applied to the flow through an abrupt 4/1 
contraction. 
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1. INTRODUCTION 

The use of numerical techniques for solving the flow of viscoelastic fluids has known an intense 
development over the last few years; a review of the field has been given recently by Crochet and 
Walters,' who also give an extended list of references. A significant output of that activity has been 
the advent of numerous previously unsuspected problems which often prevent the attainment of a 
solution in the desired domain of elasticity. One may already anticipate that forthcoming 
developments on the field will need to deal with such difficult problems as velocity and stress 
boundary layers, and stress singularities of a still unknown intensity. Moreover, the selection of a 
constitutive equation, which has often been based on its proficiency in flows with simple 
kinematics, will need to be confronted with its consequences in complex flows. 

In the present paper, we wish to consider the flow of fluids of the dqerential type, whose origin is 
closely associated with the name of Oldroyd;' briefly, the constitutive equations of such ff uids 
consist of an algebraic tensorial relationship between the stress tensor, the rate of deformation 
tensor, and their time derivatives. One of the simplest, if not the easiest, representatives of that class 
is the upper-convected Maxwell fluid which has now served for many years as a model fluid for 
developing numerical techniques, and will be used as such in the present paper. 

The main difficulty of using fluids of the differential type lies in the impossibility of obtaining an 
explicit representation of the stress tensor in terms of the derivatives of the velocity components. 
The general approach in numerical work, dating back to the papers by Kawahara and Takeuchi 
with finite elements3 and by Perera and Walters4 with finite differences, has been to use the stress 
components as unknowns together with the velocity components and the pressure (or the stream 
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function and the vorticity). In finite element work, such a technique is proper to the so-called mixed 
methods, which have been used for quite some time in the u-o-p technique for solving the Navier- 
Stokes equations. 

Several mixed finite element algorithms have been proposed for solving the flow of a Maxwell 
fluid versions differing through the presentation of the basic equations and through the order of 
the shape functions may be found in References 5-9, where one tries to observe the effects of 
elasticity upon the flow. The elastic character of the flow is usually indicated by the group AV/L, 
where 1 is a relaxation time of the fluid, V is a characteristic velocity and L a  characteristic length of 
the flow. Beyond some value of 1 V / L  which depends upon the problem, the finite element mesh and 
the method, all the algorithms fail to converge towards a solution of the non-linear system. As long 
as one is satisfied with inspecting the sole streamlines, the lack of convergence seems rather brutal. 
However, a closer study of stress and velocity components before the break-up of convergence 
reveals the early appearance of premonitory wiggles well below the critical value of LV/L. 

Most problems of practical interest contain a stress singularity of unknown nature in viscoelastic 
flow, e.g. the re-entrant corner in an abrupt contraction, or the edge in the extrusion from a die. The 
stress singularity is obviously detrimental in a mixed method, especially when the stresses are 
represented by a continuous interpolation. In the present paper, we wish to consider a test problem 
of non-trivial kinematics, in the absence of stress singularities. A converging flow in a wedge, 
described in Section 3, satisfies these requirements. It is then possible to analyse the existing 
techniques, described in Section 2, and discover in Section 4 how they behave when they are 
confronted with the same problem. It will soon be found that their performance depends upon their 
ability to deal with the high stress gradients which are typical of many viscoelastic problems. 

Further tests are presented in Section 5, based in particular on the usel' of an Oldroyd-B fluid 
which allowed, in several problems, the attainment of relatively high values of 1V/L. It is then 
found that a method similar to the one used in Reference 9 for solving the flow of a second-order 
fluid should perform well for solving the flow of a Maxwell fluid; this is shown in Section 6, where 
the method is again used for solving the converging flow in a wedge. In Section 7, the method is 
then applied to the calculation of the flow of a Maxwell fluid in an abrupt axisymmetric 4/1 
contraction. The algorithm behaves quite well before being apparently limited by high stress peaks 
at the re-entrant corner. 

2. AVAILABLE MIXED METHODS FOR SOLVING THE 
FLOW OF A MAXWELL FLUID 

Let ci denote the Cauchy stress tensor of an upper-convected Maxwell fluid; the fluid being 
incompressible, n is decomposed as follows, 

Q =  - p I + T  (1) 
where p is the indeterminate pressure and T is the extra-stress tensor which is not traceless in 
general. Let d denote the rate of deformation tensor which is the symmetric part of the velocity 
gradient tensor L; T satisfies the constitutive equation 

n 

T + A T  = 2pd 

where A is the relaxation time, p is the (constant) shear viscosity, and a triangular superscript 
denotes the upper-convected, or contravariant, time-derivative 

(3) % = a ~ / a t  + VTT - LT - TLT 
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The momentum equations are given by 

- Vp + V.T + pF = p a  (4) 
where F is the body force per unit mass, p is the specific mass, and a is the acceleration. In the 
remainder of the paper, we will assume that F vanishes identically and that the inertia effects may 
be neglected, which is often the case in actual flows where viscoelasticity plays a dominant role. 
Moreover, we will limit ourselves to steady-state flows, for which aT/at in (3) vanishes identically. 
Incompressibility requires that the velocity field be solenoidal, i.e. 

v.v = 0 (5) 

The problem now is to solve the set of non-linear partial differential equations consisting of (2), (4) 
and (5). 

The basic difficulty is apparent in (2), where one finds that T cannot be expressed as an explicit 
tensor function of the velocity gradients; thus, for a Maxwell fluid, one cannot find the equivalent 
form of the Navier-Stokes equations by inserting the constitutive equations in the equations of 
motion. In dealing with the so-called differential form of the Maxwell fluid, it has been customary 
to introduce a mixed method, where the order of the system is reduced by the selection of the extra- 
stress tensor together with the velocity vector and the pressure as unknown variables. Typically, 
one defines a finite element representation as follows: 

where T(,),v(~) and p(') are nodal values and 4,, $i, ni are the associated shape functions. 

formulation to (2), (4) and (5) as follows: 
A first mixed method, which we call MIX1, is obtained through the application of the Galerkin 

( 4 i ;  T +  - 2pd)  = O  (74 

(7b) 

(n,; v - v )  = 0 (74 

((V$i)T; - pI + T) + ( $,; pa) = F(') 

For notational simplicity, we have used in (7) the original symbols T,v and p instead of their 
interpolated counterparts in (6); F(') is the nodal vector force at the ith node which includes the 
contributions of the body for.ces and of the surface forces, and ( ) denotes the L2 scalar product. It 
has been shown' that, with MIX1, the shape'functions q!~~ and $i should be of the same order; here, 
we will adopt the representation given in Table I, which inevitably gives rise to a large number of 
nodal values. 

When the relaxation time 1 vanishes, the method MIXl does not degenerate into the classical 
velocity-pressure formulation, which is known to provide an error 0 ( h 3 )  for the velocity 
components in Stokes flow. In order to obtain that formulation as a special case, and to allow for a 
representation of the extra stresses by means of polynomials of an order lower than those of the 

Table I. Polynomial representations used with three mixed 
methods . 

Extra-stress Velocity Pressure 

MIXl P2-C" PZ-C" PI-C" 
MIX2 PZ-C" PZ-C" PI-C" 
MIX3 PI-c" PZ-c" PI-C" 
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velocity components, one may introduce in the momentum equations the following 
decomposition: 

T = 2pd - A$ (8) 

and write, instead of (7), the system 
V 

( 4i; T + AT - 2pd) = 0 

((Vt,hJT; - PI + 2pd - A;) + ( $i, pa) = F‘’) (9b) 

(n,; V T )  = 0 (94 

Two mixed methods based on (9) are summarized in Table I; in the method MIX2 second degree 
polynomials are used for representing the velocity and the extra-stress components, whereas MIX3 
uses second degree polynomials for the velocity components and first degree polynomials for the 
extra stresses. 

The systems (7) and (9) give rise to a non-linear algebraic system in the nodal values of the 
velocity components, the extra-stress components and the pressure, which, in the present paper, is 
solved by Newton’s method combined with an incremental procedure on the value of the 
relaxation time A. 

3. A TEST PROBLEM 

The numerical techniques developed for solving the flow of viscoelastic fluids are typically applied 
for calculating the flow through an abrupt contraction or an extrusion die. The stress singularity at 
the re-entrant corner of the contraction or at the edge of the die renders such problems extremely 
difficult to solve; moreover, the nature of the singularity is unknown for the flow of a Maxwell fluid. 

In order to avoid such difficulties which will be found again in Section 7, we will first compare the 
three mixed methods described in Section 2 by calculating the flow in a converging channel 
represented in Figure 1. The channel is a wedge with orthogonal walls. At a large distance from the 
tip of the wedge, where the extra stresses are small compared to their value near the tip, the inclined 
walls are connected to a plane channel which allows for a fully developed Poiseuille flow at the 
entry. Near the tip of the wedge, the walls are also connected to a plane channel by means of 
parabolic segments such that their equation is 

x = & (1 + y2/4), - 2 I y I 0 (10) 
The advantages of the parabolic walls for connecting the exit channel to the wedge are the absence 
of corners and the possibility of an exact geometrical representation by means of isoparametric 
elements . 

The half-width of the downstream channel has a unit value, and the flow-rate for each half of the 
channel is also assumed to be one. The boundary conditions are indicated in Figure 1. The shear- 
rate on the downstream channel wall is denoted by &, which takes the value 3 in the present 
problem. A measure of the elasticity of the flow is given by the product 

S R  = A”)w (1 1) 
The recoverable shear S,  is also the ratio of the first normal stress difference to twice the 
corresponding shear stress. In the present analysis, we will keep the flow-rate fixed and increase the 
value of A, or S,, in order to evaluate the effect of elasticity upon the flow. 

At some distance from the tip of the wedge, it may be expected that, in the absence of inertia, the 
flow will be radial for a Newtonian fluid. It has been shown experimentally by Giesekus” that 
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Flow 

Imposed velocity and extra - stress 
compornnts 

Figure 1. Plane converging channel and boundary conditions 

some polymeric solutions would not follow the radial (Hamel) flow; on the contrary, one may 
expect under some circumstances a dramatic growth of vortices near the tip of the wedge. Within 
the (wide) range of elasticity covered by the present study, deviations from the radial flow will be 
hardly noticeable; however, the extra-stress field will be strongly affected by elasticity, along the 
curved part of the boundary in particular. 

Several finite element meshes have been used for the present work; the elements used for 
constructing the meshes are nine-node Lagrangian quadrilaterals and six-node triangles. Having 
conducted several calculations on the mesh HAMEL 1 shown in Figure 2(a), we found it necessary 
to proceed to a local mesh refinement in the neighbourhood of the curved wall. Such a refined mesh, 
called HAMEL 2, is shown in Figure 2(b). However, it will be found in Section 4 that such a mesh is 
unsatisfactory. Thus, we constructed the mesh HAMEL 3, shown in Figure 2(c); here, the elements 
of HAMEL 1 have each been partitioned into four small elements. However, a part of the upstream 
domain has been omitted and the entry section is now a circular arc where one imposes the 
Newtonian velocity and a vanishing extra-stress field this is a valid approximation at a large 
enough distance from the tip of the wedge. The characteristics of the meshes are summarized in 
Table 11. 
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b C 

Figure 2. Finite element meshes used for calculating the flow in the domain shown in Figure 1: (a) HAMEL 1, (b) HAMEL 
2,(c) HAMEL 3 

Table 11. Characteristics of the meshes shown in Figure 2 

HAMEL 1 HAMEL 2 HAMEL 3 

Number of elements 116 204 240 
Number of nodes 53 1 789 1037 
Degrees of freedom: MIX1 and MIX2 2805 4164 5464 
Degrees of freedom: MIX3 1662 2454 3 190 

4. NUMERICAL RESULTS 

Let us first consider the Newtonian case calculated with the velocity-pressure formulation on the 
mesh HAMEL 1. Figure 3(a) shows a comparison of the calculated velocity component on the 
plane of symmetry in they direction with the analytical value obtained in a Newtonian radial flow; 
the corresponding streamlines are shown in Figure 3(b). In order to anticipate the results which 
will be found when the flow becomes viscoelastic, it is instructive to study the extra-stress field on 
the wall. Let s denote a curvilinear coordinate along the wall of the contraction, and let n denote a 
coordinate along the normal to the wall. The velocity components vanish on the no-slip wall and, 
in view of the incompressibility of the fluid, the only non-vanishing velocity gradient on the wall is 
&,/dn, where us denotes the tangential velocity component. In a Newtonian flow, the shear-stress 
on the wall T,,, will therefore be the only non-vanishing extra-stress component on the wall. 
Figure 4 shows a plot of T,,, on the wall of the contraction as a function of the arc length s. The 
curve shows a slight overshoot near the entry to the plane channel, which may be related to the 
discontinuous curvature of the wall. 

The overshoot of the shear-stress on the wall will have important consequences when the flow 
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Figure 3. Newtonian solution on the mesh HAMEL 1: (a). numerical value of the velocity in the plane of symmetry 
compared with the analytical value in Hamel flow; (b) streamlines 
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Figure 4. Graph of the tangential stress component T,, on the wall 

becomes viscoelastic. It is easy to show that the viscometric functions determine the extra-stresses 
on the wall in terms of the local shear-rate j .  For the flow of a Maxwell fluid, one obtains 

T,, = pj, T,, = 2Lpj2, T,, = 0 (12) 
Simply assuming that the Newtonian velocity field remains valid in a viscoelastic flow calculation, 
we may already expect that the overshoot in T,, and j ,  will give rise to a much more important 
overshoot in T,,, since T,, contains the square of the shear rate and an amplifying factor 2. We will 
now find that the rapid variation of T,, along the wall is the main difficulty of the present problem. 
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Table 111. Dependence of the upper limit of convergence in S, upon 
the mixed method, with the mesh HAMEL 1 

1 1  S 

Method MIX1 MIX2 MIX3 
Upper limit of S, 4.15 3 7 
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Figure 5. Graphs ofthe Tyy extra-stress component along the wall, and of the velocity on the plane ofsymmetry. The vaiues 
of S ,  and the method are indicated in the Figures 
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Table IV. Dependence of the upper limit of convergence in S ,  upon 
the mesh refinement, with the method MIX3 

Mesh HAMEL 1 HAMEL 2 HAMEL 3 
Upper limit of S ,  7 5 4.5 

In most numerical viscoelastic flow calculations one finds that, beyond some value of the 
recoverable shear S,, the solution degenerates and exhibits a spatial oscillatory pattern where one 
recognizes the size of the elements. For a higher value of S,, Newton's method ceases to converge 
and the calculation blows up. It may however sometimes happen that the method blows up 
without the preliminary appearance of wiggles in the field variables. 

The problem of the flow in the wedge has been run on the mesh HAMEL 1 with methods MIX1, 
MIX2 and MIX3; with the three methods, one may observe the development of wiggles followed by 
the lack of convergence of Newton's method. Table I11 gives the limit of S, beyond which no 
solution could be found. The fact that the iterative method converges does not mean that the 
solution is acceptable. In order to show this, let us consider in Figure 5 two significant plots 
obtained with each method. On the left, we plot the extra-stress Tyy on the wall of the contraction 
against the arc-length s, and on the right we plot the ratio u/V of the y-velocity component 
on the plane of symmetry divided by the mean velocity, against the y co-ordinate, for the value 
S ,  = 3. The stress peak which we had anticipated on the basis of the Newtonian solution is quite 
apparent on the diagrams showing Tyy as a function of s. With MIX& the wiggles in the stress field 
announce the loss of convergence and the wild oscillations obtained with MIX2 indicate why no 
converged solution could be found beyond S, = 3. In MIX3, the extra-stresses are approximated 
by means of first degree polynomials which do not allow for a clear-cut description of the stress 
overshoot and seem to delay the loss of convergence. The curve of Tyy at S ,  = 6 obtained with 
MIX3 shows the development of wiggles. Slight oscillations are also apparent on the velocity 
profile along the plane of symmetry. 

In view of the rapid rise of the extra-stresses along the wall, a natural reaction is to refine the finite 
element mesh with the hope of increasing the upper-limit of S,. Therefore, the same calculation has 
been performed with MIX3 on the meshes HAMEL 2 and HAMEL 3. The limit values of S ,  are 
reported in Table IV; it is troublesome to find that, as in many other problems, the limit of 
convergence decreases when the finite element mesh is refined, although it is not always the case. 
Such an odd behaviour is at present unexplained. 

5. TENTATIVE DIAGNOSIS 

In trying to understand the reason for the lack of convergence beyond some value of S,, one may 
wonder whether the Galerkin formulation of the constitutive equations given by (7a) and (9a) 
is responsible for the rugged behaviour of the stress field. An easy answer is obtained to that 
question by introducing the Newtonian velocity field in (7a) or (9a); the extra-stress field is then 
retrieved for a given value of ,I by solving the resulting linear system. Such a numerical experiment 
is interesting because it may tell us whether the convective terms contained in % are responsible for 
the wiggles, by analogy with the inertia terms in the Navier-Stokes equations. 

Let vN be the Newtonian velocity field and LN, dN the associated velocity gradients and rate of 
deformation tensors. In view of (3) and (7), we thus solve the following set of algebraic equations 
which is linear in the stress field, 

( $i;  T + ,I[vN.VT - LNT - T(LN)'] - 2pdN) = 0 (13) 
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HAMEL 1: (a) P2-Co interpolation; (b) P'-Co interpolation 
Figure 6. Extra-stress component T,, along the wall obtained on the basis of the Newtonian velocity field and the mesh 
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Figure 6(a) shows the graph of T,,, along the wall for S ,  = LjW = 7.5 when the interpolation for the 
extra-stresses is of the P2-Co type, as in MIX1 and MIX2; Figure 6(b) corresponds to an 
interpolation of the P1-Co type, proper to MIX3. Both curves have been obtained with the mesh 
HAMEL 1. 

It is obvious that the wiggles have disappeared altogether. The use of a P1-Co interpolation 
flattens the stress peak; this shows that a coarser interpolation leads in the present case to lower 
stress gradients, which might justify why the upper limit of S ,  decreases when the mesh is refined. 

Let us also consider the effect of a mesh refinement upon the calculation of the extra-stresses with 
a P'-Co interpolation. Figure 7(a) shows the curve of Ty,, on the wall obtained with the mesh 
HAMEL 2 shown in Figure 2; the spurious wiggles would tend to confirm that an irregular element 
pattern in a region of high stress gradients is very detrimental in a convective problem. 

T I  
3 

SR = 7.5 

P l - 6  

Hamel 2 

20. 

10. SR = 7.5 

Pl-c' 

Hamel 3 
S . 

-10. -5. 0. 5. m. 

a 

-10. -a. 

b 

20. 

L 

10. 

S 
I . 5. lo. 

Figure 7. Extra-stress component Tyy along the wall obtained on the basis of the Newtonian velocity field and a P'-Co 
interpolation: (a) mesh HAMEL 2; (b) mesh HAMEL 3 
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Figure 7(b) shows the curve of T,, obtained with the mesh HAMEL 3, which is similar to 
HAMEL 1 except that all the elements have been divided into four smaller elements. The P-CO 
interpolation on HAMEL 3 should therefore be essentially the same as the P2-Co interpolation on 
HAMEL 1. Figure 7(b), which is very similar to Figure 6(a), confirms that conjecture. 

It is now clear that the Galerkin formulation of the constitutive equations may not be held 
responsible for the degeneracy of the numerical results; rather, one must investigate the coupling 
between the constitutive equations and the equations of motion. In that respect, it is worth 
returning briefly to the method proposed by Crochet and Keuningsl' for solving the flow of an 
Oldroyd-B fluid; the use of such a fluid gives rise to an important increase of the critical value of S ,  
beyond which the iterative technique does not converge. 

The extra-stress tensor of an Oldroyd-B fluid may be written as follow: 

T = T ,  +T, (144 

(14b) 

Tz = 2pzd (144 

Tl + I f l  = 2p,d 

thus, T, has a constitutive equation identical to (2), and T, is purely viscous. After eliminating T, 
and T, from (14) one obtains 

V 
T + IT = 2(p1 + pz)(d + A.8) (1 5 )  

where I* = I p 2 / ( p 1  + p,) is the retardation time. 
The Oldroyd-B fluid and the upper-convected Maxwell fluid are indistinguishable on the basis 

of their viscometric functions; oscillatory experiments can in principle allow for the measurement 
of the retardation time.', V 

The form (15) of the constitutive equations is inconvenient for a numerical simulation, because d 
contains second order partial derivatives of the velocity field. However, observing that 

T = 2p2d + TI (16) 
where T, is given by (14b), one may easily transform the method MIX1 given by (7) in order to 
calculate the flow of an Oldroyd-B fluid and obtain 

( $i; TI + I%, - 2p1d) = 0 (174 

(17b) ((V$i)T; - pI + 2pzd + T1 ) + ( +i; pa) = F(') 

<nni;V.v) = 0 ( 174 
The presence of a viscous term in the momentum equation, justified by the constitutive equations, 
completely transforms the behaviour of the algorithm. The method has been applied to the wedge 
problem with the mesh HAMEL 1, and with a viscosity ratio p1/p2 = 8; the algorithm is still 
converging at S ,  = 9 but the calculation has not been pursued in view of the increasing amplitude 
of the wiggles. Figure 8 shows the results obtained for the extra-stress T,, along the wall and for the 
vertical velocity component along the plane of symmetry at S ,  = 6.2, with a P2-C" interpolation for 
the stress field. The same interpolation refinement of the stresses may be obtained with MIX3 
(P1-Co) on the mesh HAMEL 3, but in that case Table IV shows that the algorithm could not 
converge beyond S ,  = 4.5, with the use of the upper-convected Maxwell fluid. 

The results shown in the present and in the previous sections lead us to the following remarks: 
(i) The Galerkin formulation of the constitutive equations and the associated convective terms 

does not appear to be per se the cause of the degeneracy of the solution, provided however 
that the finite element mesh is regular enough. 
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Figure 8. Graphs of the Tyy extra-stress component along the wall, and of the velocity on the plane of symmetry for an 
Oldroyd-B fluid 

(ii) The stress-derivatives appearing in the form of the momentum equations proper to MIX2 
and MIX3 seem to be detrimental. 

(iii) The addition of a viscous component in the momentum equations, which is proper to the 
calculation of the flow of an Oldroyd-B fluid, produces an appreciable enlargement of the 
domain of convergence. 

In the next section we will take these remarks into account for formulating another mixed 
method which would be suitable for calculating the flow of a Maxwell fluid. 

6. ANOTHER MIXED METHOD 

Our aim is to provide a mixed method where viscous terms are present in the equations of motion 
without however inserting partial derivatives of the extra stresses. A convenient approach is to 
introduce the following substitution for the extra-stresses: 

T = 2pd + S (18) 
The constitutive equation for S is then, on the basis of (2), 

S + A + 2 1 p 8 =  0 

We may now use the following variables for defining an approximation: 

s = CS(i)$i, i = CV(')$,, p" = C p ( i ) q  (20) 
A 

The Galerkin formulation of (19) requires some care; indeed, the term (q5i;d) contains second- 
order spatial derivatives of the velocity components, and the use of a Co-representation would lead 
to a non-conforming finite-element representation. However, using the divergence theorem, we 
obtain the following identity: 

(4i; 8) = ( bi; V.(vd)) - ( 4i; Ld + dLT) 
= - ((Vq5JT; vd) - ( q 5 i ;  Ld + dLT) + <( 4i; u,d >> (21) 

where a double bracket represents a surface integral along the boundary of the domain. 
A mixed method, which we will call MIX4, may thus be defined as follows, 

( 4i;S + A B  - 21p(Ld + dLT)) - ~ A , U ( ( ( V ~ ~ ) ~ ; V ~ )  + 2 1 ~ ( ( 4 ~ ;  v,d>> = 0 (224 

((V$JT; -pI+2pd+S)+(+ i ;pa)=F( i )  (22b) 

(7C,;V.v) = 0 (W 
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where v, denotes the normal component of the velocity on the boundary. The first equation 
contains the flux of the rate of deformation tensor on the boundary of the flow domain. On rigid 
walls, v, vanishes identically, and so does the flux of d; the same is true on a plane or an axis of 
symmetry. In an entry section, the components of the tensor S are imposed as essential boundary 
conditions in view of the hyperbolic nature of the constitutive equations; the essential boundary 
conditions replace equation (22a). In an exit section, one may not in principle impose the value ofS; 
it is however possible to express the surface integral (($i;v,d>> in terms of the nodal velocity 
components, and to replace it by a contribution to the non-linear algebraic system. When the exit 
section is long enough so that the flow is fully developed as the fluid leaves the flow domain, it has 
been found that imposing the value of S or expressing the surface integral in terms of nodal 
velocities lead to the same numerical solution. 

The method MIX4 has been tested with a P2-Co interpolation for the velocity components, and 
a P1-Co interpolation for the components of S and the pressure. Let us consider in the present 
section the results obtained for the flow in a wedge described in Section 3. On the mesh HAMEL 1, 
the algorithm is still converging at S ,  = 7.5; moreover, the algorithm is still converging at S ,  = 7 on 
HAMEL 3. The calculation has however been stopped in view of increasing wiggles in the stress 
field. 

Figure 9 shows the results obtained at SR = 3 and S, = 6 with MIX4 on HAMEL 1; these results 
should be compared with those of Figure 5 obtained with MIX3, based on the same type of 
interpolation. The results obtained with MIX4 on the mesh HAMEL 3 exhibit a marked stress 
overshoot at the entry of the plane channel and are very similar to those obtained with an Oldroyd- 
B fluid, shown in Figure 8. 

The method MIX4, which has just been shown to provide good performances for high values of 
S,, is essentially the same as the method used by Mendelson et aL9 for calculating the flow of a 
second order fluid. However, these authors disregarded the method for calculating the flow of a 
Maxwell fluid in view of its bad performances; our experience contradicts that evaluation. 

& 10. i_ SR-6 

MIX4 

) I  .5 I Y 
-10. -5 5 m -10. -5. 5. 10. 

Figure 9. Graphs of the Tyy extra-stress component along the wall, and of the velocity on the plane of symmetry for a 
Maxwell fluid with the method MIX4 
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7. THE FLOW OF A MAXWELL FLUID THROUGH AN ABRUPT CONTRACTION 

The flow of a viscoelastic fluid through an abrupt contraction has become a classic in view of its 
complexity combined with its intrinsic interest in experimental rheology. It is known indeed that 
some materials exhibit an important growth of the corner vortex when the elasticity of the flow 
increases, although some others do not provide any modification of the kinematics; it is hoped that 
the numerical simulation of the flow will provide a hint for understanding the observed 
phenomena. The flow of a Maxwell fluid through a 4/1 axisymmetric contraction was studied by 
Viriyayuthakorn and Caswell' who, using the integral representation of the Maxwell fluid, could 
obtain converged solutions up to S ,  = 2; no significant vortex growth could be observed. This 
result has been confirmed by Crochet14 who, using the Oldroyd-B model, reached a value of 

I- 
12 10 

I 
I /  I I I I I l l l l d  

4 it 
Figure 10. Finite element mesh for calculating the flow in an axisymmetric 4/1 contraction 

1 

Figure 11.  Corner vortex in the axisymmetric contraction: (a) Newtonian case; (b). Maxwell fluid at S,  = 2.4 
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S ,  = 3.6. However, using a Phan Thien-Tanner model, Keunings and Crochet” have been able to 
observe an important growth of the vortex size. 

The problem of the flow of a Maxwell fluid through an abrupt 4/1 contraction has been run with 
the method MIX4 on the mesh used in Reference 13; we replace however the composite 
quadrilaterals used in Reference 13 by Lagrangian quadrilaterals. The mesh, shown in Figure 10, 
contains 129 elements and 577 nodes, giving rise to 1959 nodal variables. The velocity components 
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Figure 12. (a) Graph of the axial velocity profile along the axis of symmetry; (b) Graph of the Tyy extra-stress component 
along the wall 

10. 5. 0. 5. 10. 

Figure 13. Graph of the axial velocity profile along the axis of symmetry obtained with MIX3 
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and the extra stresses are imposed in the entry section, whereas the velocity components alone are 
imposed in the exit section. 

The value of S, = A$, is calculated on the wall of the downstream channel. With the method 
MIX4, it has been possible to reach a value of S, = 2.4, beyond which Newton’s method does not 
converge. The streamlines at S, = 2-4 are compared in Figure 11 with those of the Newtonian case; 
one observes a slight vortex growth which may not be considered as significant. Figure 12(a) shows 
the development of the axial velocity profile along the axis of the contraction, also at S, = 2.4. The 
velocity profile shows a slight overshoot of 3.0 per cent with respect to the fully developed value, 
which is in good agreement with the results found in Reference 14 with an Oldroyd-B fluid, where 
3-3 per cent was found at S, = 2-7. Figure 12(b) reveals the most probable reason for the lack of 
convergence beyond S, = 2.4; it shows the value of T,,, along the wall of the contraction, in the 
neighbourhood of the re-entrant corner. The inherent stress singularity is incompatible with the 
Co-approximation used for the extra-stress field; still, a high and narrow stress peak is obtained in 
the neighbourhood of the corner. The reason why the use of an Oldroyd-B fluid allows the 
attainment of a higher value of SR may be that the intensity of the singularity is of a lower order for 
such a fluid. The method MIX4 has also been run on another finite element mesh for the abrupt 4/1 
contraction, which is denser in general than the mesh of Figure 10, but where the elements around 
the reentrant corner are somewhat larger; it is then possible to reach a value of S, = 3.4. 

Finally, we wish to show the counterpart of Figure 12(a) obtained with MIX3 at SR = 2.4; 
Figure 13 shows the graph of the axial velocity obtained along the axis with that method. The 
calculation was not pursued above SR = 2.4 in view of the degeneracy of the solution. 

8. CONCLUSIONS 

Four finite element methods developed for solving the flow of viscoelastic fluids have been applied 
for solving the same problem. Beyond some critical value of the recoverable shear, all techniques 
develop spurious wiggles in the velocity field and, above all, in the extra-stress field. The critical 
value of S, depends, however, upon the method. It is found that the presence of explicit viscous 
terms together with the absence of stress gradients in the discretized momentum equations 
considerably improves the behaviour of the algorithm. 
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